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Why Parallel Algorithms?

Supercomputer (TOP 500)

https://www.top500.org/statistics/perfdevel/



  

Why Parallel A*?

● Larger aggregated memory (with distributed environment)
– potentially able to solve instances which sequential A* 

cannot solve due to memory limitation
● Walltime speedup
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Dynamic Load Balancing Approach
Work Stealing Approach (Rao&Kumar’87)

Process 0 Process 1

Send me a job!
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Dynamic Load Balancing Approach

Process 0 Process 1

Work Stealing Approach (Rao&Kumar’87)
● Incurs duplicated nodes (for graph search)
● Incurs coordination overhead
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Send me a job!
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Static Load Balancing Approach (Hashing)

● A global hash function assigns each state to a unique process
● A process sends generated nodes to their owner processes
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(Kishimoto et al. 2009)



  

Static Load Balancing Approach (Hashing)
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As HDA* relies on the hash function for load balancing, 
the choice of hash function is significant to its performance!

Hash Distributed A* (HDA*)
(Kishimoto et al. 2009)



  

Hash Function for HDA*

● State (s) is given as a set of features xi:
state  s = (x1, x2,...,xn)

● Given a state s, a hash function H(s) returns the 
process which owns the state s
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We want H(s) to be balanced
 → load balance (LB)

Properties of Hash Function



  

We want H(s) to be balanced
 → load balance (LB)
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We want the value of H(s) to 
not change frequently
→ communication overhead
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Properties of Hash Function



  

● Strenght: good load balance
● Limitation: high communication overhead
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process0 process1

Communication Costprocess0 process1

State abstraction (AHDA*)
Burns et al. (2010) 

● Strenght: low communication overhead
● Limitation: worse load balance
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Two Extremes

CO

LB

AHDA*
(State abstraction)

ZHDA*
(Zobrist hashing)

Both ZHDA* and AHDA* have a clear weakness and do not 
scale well in large-scale cluster



  

Init

Goal

process0 process1

process0 process1

Communication Cost

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016) 

state space graph

● A hybrid of Abstraction and Zobrist hashing
● Can balance the trade-off of LB and CO by a parameter



  

Variants of HDA*
Jinnai&Fukunaga (2016) 
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● Bunch of variants… so which one is the best and why?
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CO

LB

OZHDA*

FAZHDA*

GAZHDA*

DAHDA*

● Bunch of variants… so which one is the best and why?
● In this work we developed a model for HDA* so that we can 

evaluate which method is likely to perform the best

Variants of HDA*
Jinnai&Fukunaga (2016) 

AHDA*
(State abstraction)

ZHDA*
(Zobrist hashing)



  

Workload Graph
● A subset of state-space graph which 

includes node n iff f(n) < f* or n is a goal node

f(n) < f* + goal node 

Init

Goal



  

Model of Workloads

1. Expand a node owned by the process (t = tproc)

2. Send child nodes to their owners (t = tcom)

3. Terminates when all nodes are expanded and sent
 (to ensure optimality)

Proc 0

Proc 1

Init

Goal



  

CO :=
number of edges which require communication
total number of edges

LB :=
maximum number of nodes owned by a process
average number of nodes owned by a process

Proc 0

Proc 1

Init

Goal

Model of Overheads

Communication Overhead (CO): 

Load Balance (LB):



  

Communication/Search Efficiency
● Communication Efficiency

– The degradation of walltime efficiency by communication
– Assume communication cost for every pair of processors are 

identical

● Search Efficiency
– The degradation of walltime efficiency by load balance

(proceedings)

eff c :=
1

cCO c :=
tcom
t proc

where

eff s :=
1

1+ p(LB−1)
where p :=number of processes



  

Model Efficiency
● Model Efficiency

– Assume communication and search overheads are the dominant 
 overhead

=
1

(1+cCO)(1+ p(LB−1))

eff esti :=eff c⋅eff s



  

Model of Parallel Search

From the partitioning of the workload graph, we can calculate the 
model efficiency:

eff esti :=
1

(1+cCO)(1+ p(LB−1))

eff esti=
1

(1+1⋅4 /6)(1+2(3 /2.5−1))
=0.42

Proc 0

Proc 1

Init

Goal

(where c = 1)



  

Model vs. Actual Efficiency

● Calculated model efficiency by 5 HDA* variants
● 48 core machine
● 14 instances from IPC benchmarks
● M&S heuristic (Helmert et al. 2014)

c (=
tcom
t proc

)=1



  

Model in Practice
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Use of the Model

● We cannot calculate LB and CO beforehand of the search

→ The model cannot be used to predict the performance
● So what it the takeaway from the model?



  

Work Distribution By DTG-Partitioning 
(GRAZHDA*/sparsity)

● Domain Transition Graph (DTG) is an abstraction of the state-
space

● By partitioning each DTG we can approximate partitioning 
the whole state-space graph.

(see the paper for detail)



  

Experimental Results

Kishimoto et al. 
2013

Jinnai&Fukunaga
2017



  

Comparison of Model Efficiency

● GRAZHDA*/sparsity has the best model efficiency

eff esti :=
1

(1+cCO)(1+ p(LB−1))



  

Summary
● Developed a model to estimate the walltime efficiency of HDA*
● Code available at my github: 

https://github.com/jinnaiyuu/Parallel-Best-First-Searches
https://github.com/jinnaiyuu/fast-downward (spaghetti right now)

● Journal version available at arXiv
Jinnai Y, Fukunaga A. 2017.  On Hash-Based Work Distribution Methods 
for Parallel Best-First Search

Open Questions
● Parallelizing other searches (e.g. width-based search)

https://github.com/jinnaiyuu/Parallel-Best-First-Searches
https://github.com/jinnaiyuu/fast-downward


  



  



  

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

● Goal: Distribute nodes uniformly among processes

● Method: Initialize a table of random bit strings R; XOR 
the hash value Ri[xi] for each feature

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]
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(xi  represents the position of tile i)

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]

R1[2] =

R2[3] =

R3[4] =



  

● Strenght: good load balance
● Limitation: high communication overhead
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state space graph



  

State abstraction (AHDA*)
Burns et al. (2010) 

● Goal: Assign neighbor nodes to the same process

● Method: Project states into abstract states, and 
abstract states are assigned to processors
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Example: s' only considers the position of tile 1,2, and 3: 
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State abstraction (AHDA*)
Burns et al. (2010) 

● Strenght: low communication overhead
● Limitation: worse load balance
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Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016) 

Goal: Distributes nodes uniformly while assigning neighbor 
nodes to the same process

Method: Apply feature abstraction Ai(xi) to project features 
into abstract features and XOR the hash value of each abstract 
feature
AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]

AZ(s) = Z(s'), where s' = ( A1(x1), A2(x2),..., An(xn) )

or



  

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016) 

AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]
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Greedy abstract feature generation
(Jinnai&Fukunaga 2016)

Approach: maps each SAS+ variable xi to abstract feature S1 
and S2 based on xi's domain transition graphs (nodes are 
values, edges are transitions) 

1.  Assign the minimal degree node to S1

2.  Add to S1  the unassigned node which shares the most edges 
with node in S1

3.  Until |S1| reaches the half of the DTG, repeat step 2. 

4. Assign all unassigned nodes to S2

S1

S2

GreedyAFG applied to DTG of 8-puzzle

A i(x i)=
1 (if x i∈S1)

2 (if x i∈S2)

xi=1

xi=4
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xi=2

xi=5

xi=8

xi=3

xi=6

xi=9

DTG of a variable xi 
represents the 
transition of the value
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